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On simulation of outflow boundary conditions in finite
difference calculations for incompressible fluid
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SUMMARY

For incompressible Navier–Stokes equations in primitive variables, a method of setting absorbing
outflow boundary conditions on an artificial boundary is considered. The advection equations used on
the outflow boundary are convenient for finite difference (FD) methods, where a weak formulation of a
problem is inapplicable. An unsteady viscous incompressible Navier–Stokes flow in a channel with a
moving damper is modeled. An accurate comparison and analysis of numerical and mechanical situations
are carried out for a variety of boundary conditions and Reynolds numbers. The proposed outflow
conditions provide that the problem with Dirichlet boundary conditions should be solved on each time
step. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we present and discuss an approach to the numerical simulation of outflow
boundary conditions for an unsteady incompressible Navier–Stokes flow. A first-order advec-
tion equation is used on an artificial boundary. The advection velocity is the velocity of a
typical flow, and it is allowed to vary along the boundary. For a small perturbation of a linear
flow when the linearized analysis is valid, the proposed conditions are justified by the
techniques of Halpern and Schatzman [1] and a scaling method of Hagstrom [2]. For a close
artificial boundary and essential non-linear flow, these conditions seem reasonable on intuitive
grounds, and numerical results appear promising.

The explicit treatment of the derived boundary conditions makes them convenient for
numerical realization because for the given velocity field at time t, the velocity field at t+Dt
can be found via solution of the problem with Dirichlet boundary conditions. This velocity
field satisfies the incompressibility condition on the artificial boundary as well as in the interior
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of the domain. The considered outflow conditions are local (i.e., differential) in time and space
and are readily generalized on a three-dimensional case.

In Section 2, the problem is set up and we argue why the setting of boundary conditions
seems natural for simulations of unsteady flows, especially when finite difference (FD) schemes
are used.

The test problem modeled is flow in a channel with a damper on the inflow boundary, which
moves with some period. The moving damper makes the velocity field substantially unsteady
and non-linear, even for moderate Reynolds numbers. Both completely free outflow boundary
and one with a forward-facing step are considered.

The numerical scheme for this problem is presented in Section 3. A semi-implicit scheme and
a fully coupled solution technique are chosen: the non-linear terms are taken from the previous
time step, while viscous and pressure terms are approximated on the current time layer.

Section 4 presents numerical results, and their careful examination, for the problems with
various boundary conditions. To give a good idea of the effects of boundary conditions, an
‘exact’ solution of the problem is computed. Special attention in Section 4 is drawn to:

(i) the solutions behavior near the outflow boundary with different boundary conditions,
(ii) the upstream influence of boundary conditions tested,

(iii) the stability of numerical schemes, and
(iv) the amount of computations in general.

Further remarks and conclusions are given in Section 5.
It should be noted that the methods proposed can be easily transferred to iterative

procedures for solving steady problems of fluid dynamics. They are quit suitable also for finite
elements, finite volumes and spectral methods for Navier–Stokes equations.

2. SETTING UP OF THE PROBLEM

The momentum equation for two-dimensional viscous incompressible flow can be written in
the form [3]

(u
(t

+ (u · 9)u=n92u−9p (1)

where u= (u1, u2) is the velocity of flow, p=p(t, x) is the pressure, and n is the kinematic
viscosity.

The incompressibility condition is

div u=0 (2)

All necessary initial and boundary conditions are determined below.
The computational domain is shown in Figure 1. To make our assumptions clear, we use the

notations from Figure 1 below.
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Figure 1. Computational domain.

By segments [AB], [BC], [DE], and [EF] in Figure 1, we denote a boundary with the
homogeneous Dirichlet condition u=0, which has a physical meaning of no-penetration and
no-slip of fluid on steady walls. In general, the co-ordinates of point F=F(0, x2(t)) are
time-dependent. Here x2(t)=x2(0)+hF sin(2pK−1t), where K is a period of movement, hF is
an amplitude of movement, and x2(0) is a location of the damper at the initial moment. On the
inflow boundary [AF] we set u= (P(x2), 0), where P(x2) is a parabolic Poiseuille profile. The
flux of the incoming flow is fixed (i.e., 	[AF] u1 ds=constant Öt]0).

The assignment of any ‘fixed’ boundary condition on the artificial outflow boundary [DC]
(i.e., fixed a priori flow) turns out to be inadequate. For the proper setting of outflow
conditions one can use so-called ‘transparent’ boundary conditions and related numerical
techniques [4–7]. However, for unsteady problems, the transparent boundary conditions are
integral in time and space and thus impractical in computations.

The problem of useful local outflow boundary conditions for unsteady, incompressible,
viscous non-linear flow appears to be a non-trivial one and has long been a matter of
discussion. Here, we include only a brief consideration of several approaches to this problem.

Halpern and Schatzman [1] deduced transparent boundary conditions for Oseen lineariza-
tion of Navier–Stokes equations. Local absorbing boundary conditions were designed by
Halpern and Schatzman as an approximation of the transparent conditions. They can be
written in the form

(u1

(t
+ (U · 9)u1=0 (3a)

(u2

(x1

=0 (3b)

Here and henceforth, U(x) is a known homogeneous ‘typical’ flow.
Hagstrom [2] constructs asymptotic boundary conditions, which are accurate for dominant

wave groups, satisfying spatial Orr–Sommerfeld equations. In vorticity–streamfunction
Navier–Stokes calculations these conditions have some success also in the non-linear regime.
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Another method, considered by Hagstrom for primitive variables formulation, is the direct
application of the scalings used to approximate spatial Orr–Sommerfeld equations. In terms of
the physical variables, these are

(

(x1

=O
� 1

Re
�

,
(

(t
=O

� 1
Re

�
Using these scalings it is shown that

(u2

(x1

=O
� 1

Re2

�
(4a)

p−
1

Re
(u1

(x1

+C(t)=O
� 1

Re2

�
(4b)

Here, the function C(t) is an arbitrary constant, which may be added to p. Equations (4a) and
(4b) result in boundary conditions after dropping the O(Re−2) terms. Conditions of this type
are quite usual for the Galerkin approach to the Navier–Stokes equations, where appropriate
boundary conditions are obtained via specification of a surface traction vector on an artificial
boundary. The obtained conditions used to be natural in a weak formulation [8]. For more
recent analyses of such an approach see Bruneau and Fabrie [9] and Heywood et al. [10].

While conditions (4a) and (4b) are satisfied in a finite element formulation, in a weak sense
there direct adaptation for FD methods seems to be questionable. Many (if not most) papers
with an FD approach use (( · )/(n for normal velocity component. In our model problem it
can be the following boundary conditions on [CD]:

(u1

(x1

=0, u2=0 (5a)

or

(u1

(x1

=0,
(u2

(x1

=0 (5b)

If we assume function u to be smooth enough, then conditions (5a) guarantee the validation
of the equality div u=0 on the artificial boundary. Sometimes, in order to avoid any ‘fixed’
conditions on the u2 component, conditions (5b) are used in practice. However, if one wishes
velocity to satisfy conditions (5b), together with the incompressibility equation on the
boundary, then the restriction u2=c appears again. Moreover, in the above test problem,
c=0. However, for unsteady non-linear flow equations, u2=0 is not the proper choice on an
artificial boundary, apparently.

Note also that the loss of the important conjunction property of −div and 9 operators in
(5a) and (5b) and the mixed boundary conditions decrease the effectiveness or make it very
difficult to use some numerical methods that are good for solving problems of the Stokes- and
Navier–Stokes-type with Dirichlet boundary conditions for the velocity function.
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Conditions (3a) and (3b) are more convenient for numerical FD realization, since after the
explicit time discretization of (3a), one has Dirichlet boundary conditions on u · n and so the
conjunction property of −div and 9 can be ensured. Although conditions (3a) and (3b) have
theoretical justification in Reference [1] for Navier–Stokes flow, in Section 4 we show that
they have evident influence upstream on the flow in the non-linear regime. In this case,
Equation (3b) seems troublesome. Note that Equation (3b) appears also as (4a) and as (5b). To
avoid this condition for u2 we use the method of scalings and get (u2/(t=O(Re−2), (u2/(x1=
O(Re−2). Combining these O(Re−2) terms results in the following boundary condition:

(u2

(t
+U1

(u2

(x1

=0 (6)

Unlike (3b), Equation (6) has an unsteady nature and could be more suitable for unsteady
flows. Beside this, Equation (3a) together with Equation (6) provide us with Dirichlet
conditions u · n and u · t on the outflow boundary after explicit treatment.

In our numerical experiments we formally chose function U through one of the following
ways:

(i) U (1)(x)= (Uconstant, 0);
(ii) U (2)(x)= (P(x2), 0), where P(x2) is a Poiseuille profile.

Taking into account the proper choice of U (k), Equations (3a) and (6), we can rewrite the
outflow boundary conditions for u in the following way:

(u
(t

+U1
(k) (u
(n

=0, k=1, 2 (7)

In view of rather obvious mechanical interpretation, we call boundary condition (7) the drift
conditions, and function U(x) the drift function.

Equations of the transport type were considered on artificial boundaries in various partial
differential problems. Conditions similar to Equation (7) were introduced for a two-
dimensional wave equation [11] (first-order absorbing boundary conditions) and used on
artificial boundaries for wave-like equations [12–14].

Looking for analogs in fluid dynamics theory, we should mention non-reflecting boundary
conditions for compressible viscous flow on an artificial boundary [15,16] or their improve-
ment for one-dimensional subsonic flows [17]. It was found that non-reflecting conditions are
more effective to reduce a reflection of outflow boundary in contrast to the traditional
conditions for pressure. For a treatment of non-linear problems see Hedstrom [16] and
Thompson [18]. Ultimately, conditions similar to Equation (7) were mentioned by Gresho [8]
as those to be gaining favor (see also Reference [19]). For some other considerations of outflow
conditions problem, we also refer to Johanson [20] and Jin and Braza [21].

Let us come back to formula (7). Note that the validity of the equation div u=0 on the
artificial boundary together with conditions (7) does not require any ‘fixed conditions on
velocity components u1 or u2. Only for the stationary solution we obtain u2�[CD]=0. In this
case, conditions (7) coincide with the conditions of Halpern–Schatzman and ‘traditional’ (5b).
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Existence and uniqueness theorems for the system of equations (1) and (2), the initial data
u0(x), the boundary conditions (7) on [CD], and the Dirichlet conditions on the other part of
boundary hold after time discretization of the system, together with condition (7), i.e., for a
known solution at time t and time step t, functions u(t+t, x) and p(t+t, x) are found
uniquely. Note that this is not the case for conditions (5a) and (5b) or for the stationary
problems when no initial conditions are posed (see the counterexample in Reference [19]). The
extension of these theorems to the differential case requires additional investigations.

For the sake of convenience we will write the ‘fixed’ boundary conditions in the form of (7)
taking for them U (0)
0. Then, boundary conditions for u(x, t) will be the same as boundary
conditions for u0(x), where u0(x) is the initial condition at the moment t=0. For u0(x) we take
the solution of the stationary Stokes problem with Poiseuille flow on [AS] and [CD].

It should be noted that for very accurate simulation of the flow phenomena, an artificial
boundary should be moved ‘far’ to the right even in the case of absorbing boundary conditions
on the outflow. To make the influence of different boundary conditions more clear we do not
move away the outflow boundary in our numerical experiments.

Some further remarks on other absorbing boundary conditions of advection type are given
in Section 5.

3. NUMERICAL SCHEME

To solve Equations (1) and (2) numerically, we use the staggered grid, which proves to be good
enough for the numerical solution of different problems of fluid dynamics [22–25]. Here we
describe the numerical scheme used. Let V( = [0, 2]× [0, 1], h1=2/N1, h2=1/N2.

Let us introduce the sets

V( 1=
!��

i−
1
2
�

h1, jh2
�

: 05 i5N1+1, 05 j5N2
"

V( 2=
!�

ih1,
�

j−
1
2
�

h2
�

: 05 i5N1, 05 j5N2+1
"

V3=
!��

i+
1
2
�

h1,
�

j+
1
2
�

h2
�

: 05 i5N1, 05 j5N2
"

By H0
h we denote a linear space of vector functions defined on V( 1@V( 2 and vanished on the

appropriate grid boundary. Using Lh we denote a space of functions defined on V3, which
satisfy the condition

%
x�V3

ph(x)=0

Operators divh, 9h, (92)h and convective terms N(uh, vh) we define the following [23,25]:
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divh u�x�V3
= %

2

k=1

hk
−1�uk

�
x+

hk

2
ēk

�
−uk

�
x−

hk

2
ēk

��
, u�H0

h@Hp
h

{9hph�(x1, x2)�V1@V2
}k=hk

−1�ph�xk+
hk

2
ēk

�
−ph�xk−

hk

2
ēk

��
, k=1, 2

N1(uh, vh)�x�V1
= (4h1)−1[(u1

h(x−h1ē1)+u1
h(x))(61

h(x)−61
h(x−h1ē1))

+ (u1
h(x)+u1

h(x+h1ē1))(61
h(x+h1ē1)−61

h(x))]+ (4h2)−1

��
u2

h�x−
(h1ē1+h2ē2)

2
�

+u2
h�x+

(h1ē1+h2ē2)
2

��
· (61

h(x+h2ē2)−61
h(x))

+
�

u2
h�x+

(h1ē1−h2ē2)
2

�
+u2

h�x−
(h1ē1+h2ē2)

2
��

(61
2(x)−61

h(x−h2ē2))
n

N2(uh, vh) is defined similarly. (92)h is the usual five-point approximation of the Laplace
operator.

Using the notation (aI− (92)h)0
−1c, we denote a solution of the equation (aI− (92)h)uh=c,

uh�H0
h, where I is the identity operator, a]0 and c is defined in all interior nodes of the grid

domain.
Further, we use the notations: u(x)=uh(x, t), û(x)=uh(x, t+t), p(x)=ph(x, t), p̂(x)=

ph(x, t+t), where t is a time step.
We consider the following scheme. If u is known already, then the functions û and p̂ are

determined from

û−u
t

=n(92)hû−9hp̂−N(u, u)

divh û=0, u0=u�t=0

û�G0
=0, û�G1

= (Ph(x2), 0)

û(x)=u(u(x)−th1
−1U (k)(x)(u(x)−u(x−h1ē1))), x�G2 (8)

where G0 is a grid boundary on [AB], [BC], [DE], [EF]; G1 and G2 are grid boundaries on [AF]
and [CD] respectively; Ph(x2) is a grid projection of the Poiseuille profile; U (k)
 (U (k))h is a
grid projection of the drift function, k�{0, 1, 2}; u is chosen to satisfy the grid analog of the
condition �(V û · n ds=0.

Note that u=1 in the case of free (without the [BC] step) outlet or for the steady solution,
generally u�1+ct2. In the case of k=0, we are solving the problem with ‘fixed’ outflow
boundary conditions, and in the case of k=1, 2, we are solving the problem with the drift
conditions on the outlet.

For the Halpern–Schatzman boundary conditions, the equation for u2 on G2 in Equations
(8) is replaced by

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 499–534



M. A. OL’SHANSKII AND V. M. STAROVEROV506

û2(x)− û2(x−h1ē1)=0, x�G2

On every time step a problem of the Stokes type with parameters should be solved. Consider
this problem. After transference of Dirichlet non-homogeneous boundary conditions to the
right-hand side of the momentum and compressibility equations, and after elimination of û
from these equations, we can rewrite the problem in the following way:

divh((nt)−1I− (92)h)0
−19hp̂= f h (9)

Equation (9) is effectively solved by the conjugate gradient method with the preconditioner
[26].

No additional calculations are needed to recover the velocity field û. Moreover, û exactly
satisfies the incompressibility condition for the accurate solution of (9).

4. NUMERICAL RESULTS

In this section we present and compare results of calculations carried out for the following
problems with different outflow conditions (see Figure 1):

(I) The damper [EF] moves up and down with a period of 0.5; the extreme positions of point
F are (0, 0.9) and (0, 0.1); x2(0)=0.5; 	[AF(t)] u1 ds=1, Öt]0; all the interval [BD] is
considered as the outflow boundary (i.e., point C coincides with B).

(II) The inflow conditions are the same as in the problem I, except on the outlet [BC] the step
of height 0.5 is disposed of.

For both problems we also compute a so-called ‘exact’ solution. For problem I, this is a
solution calculated with the outflow boundary moved far to the right (V( = [0, 16]× [0, 1], and
for problem II this is a solution of the real forward-facing step problem with the step length
of 6.

There are a large number of ways to define the Reynolds number Re=Vl/n. For the
problems considered it was naturally to choose

V=max
t]0

��AF(t)�−1&
[AF]

u1 ds
�

l=1 is the channel height, n is the kinematic viscosity. Thus, we have Re=10n−1.

4.1. On stability of numerical schemes

Using numerical scheme (8) for calculations, one has to keep in mind the conditional stability
of this scheme. Restrictions on the time step appear owing to an approximation of the
convective terms on the previous time layer. For the sufficient stability conditions of (8) with
Dirichlet boundary conditions see Reference [27].
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At the same time the discrete analog of drift boundary conditions, which we used (Section
3), can be considered as an approximation of the one-dimensional transfer equation by an
explicit, conditionally stable scheme.

Thus, one may expect that the drift boundary conditions could prevent the further loss of
stability of the numerical scheme. That is why we turn our attention now to the checking of
the stability of numerical scheme (8) for U (1) and U (2).

Numerical experiments were carried out for the problem I. The test below was used to
investigate the stability of scheme (8). The numerical scheme was said to be stable if the
following relation was valid:

max
t� [0,t 1]


u(t)


u(0)
5M

where t1=10K, M=100, �� · �� is the L2 norm.
In Table I one can see values of maximum t, for which numerical scheme (8) is stable in the

above sense.
The values of t from Table I were found through the dichotomy method for solving the

problem x(t)=0.5 with the aspect error 0.001, where

x(t)=
�0, if the problem is not stable

1, if the problem is stable

Symbol * in Table I means that for different initial values of t, the calculated results differ
and lie in the interval [0.00014, 0.00025]. This effect indicates irregular behavior of the function
x near the point of stability loss for numerical scheme with U (0), n=5×10−4.

We can see from Table I that restrictions on the time step, which we have to introduce to
guarantee stability, are not stronger for the drift conditions U (1) and U (2) than for ‘fixed’
boundary conditions (U (0)), and they are slightly weaker for higher Re.

The above criterion does not guarantee that exponential instability is suppressed for all t

calculated. This criterion is used only for comparison. However, the calculated values of t are
very close to critical. In Figure 2 we show the evolution of the solution through time with

Table I. Critical t for stability of scheme grid 32×64, Re=10n−1, t1=5.

U2U1U0n¯U

0.03 0.00631 0.00631 0.00631
0.001000.01 0.00100 0.00100

0.000263 0.000293 0.0002690.001
* 0.000148 0.0001240.0005

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 499–534
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Figure 2. Behavior of velocity spatial norms for t=0.001 and t=0.00105.

n=0.01, U2, t=0.00105 and t=0.001. For t=0.00105 the solution blows up and for
t=0.001 calculations are stable. The solutions of the problem for t=0.001 and for t=5×
10−4 that guarantee stability of the scheme were in a very good agreement.

4.2. On accuracy of numerical schemes

While results on accuracy of the marker and cell (MAC) scheme are well known (see
Reference [28]) and the use of this scheme in computational fluid dynamics has a long
history, its application with given data requires additional checking of convergence. To
this end, the ‘exact’ solution of problem I was calculated on four embedded grids,
with h=1/16, 1/32, 1/64, and 1/128 respectively, and other data fixed, in particular n=0.01.
Pointwise convergence was detected both for pressure and velocity; see Figure 3 as an
illustration for two points. Solutions for h=1/64 and h=1/128 practically coincide. A
minor loss of convergence in pressure is due to the well-known lack of regularity for pressure
function in comparison with velocity. The grid with h=1/64 was chosen for our further
calculations.

4.3. General form of solution, influence of boundary conditions

Calculations were performed with n=0.01 (Re=103), and the time interval equal to 20K,
where K=0.5 is the period of damper movement. Setting t=2×10−4 to reach the stability
of the numerical scheme (Table I), we obtain solutions of the problem with the drift boundary

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 499–534
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Figure 3. Time histories of u1, u2 and p in point (1, 0.5) and p in (2, 0.875), where – +× –, h=1/16; – – –,
h=1/32; —, h=1/64; –
–, h=1/128.

conditions (U (k), k=0, 1, 2), Halpern–Schatzman (HS) boundary conditions, and the ‘exact’
solution on time interval [0, 20K ]. A solution of the stationary Stokes problem was considered
as the initial value; therefore, the further evolution of the flow can be divided into two
qualitatively different stages

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 499–534
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(I) the stage of periodic solution formation
(II) the stage of periodic behavior of the solution

The duration of the first stage can be estimated approximately as 4K (or �2). For the
outflow boundary without the [BC] step, the typical behavior of the flow is demonstrated in
Figures 4–8 (we show streamlines for not-time-average data).

At first the single vortex is formed behind the damper. Since the damper goes down and the
average inflow velocity increases, the intensity of the vortex is growing and its center is moving
down.

Sufficiently large Reynolds number and small period K provide separation of this vortex
when the damper goes up; after separation, the vortex drifts downstream. Here, the general
form of solutions for all considered problems is the same (Figure 4).

On time interval from 0.5 up to 1.0, the form of solutions for different boundary conditions
is also practically the same and is shown in Figure 5. Here, as well as on every period of
damper movement, the large vortex is forming behind the damper with its further progress
downstream. These large vortices are said to be ‘main’.

Along the bottom wall, the bending streamlines form a new smaller eddy, recirculating in the
opposite direction as that within the main vortex. Further, the formation and downstream
progress of the smaller secondary eddy along the bottom wall happen at every period of
damper movement. Formation of these downstream moving eddies for the transitional and
turbulent regimes in a channel with a backwards-facing step is reported in Reference [29].

Beginning with time 2K, differences in the flow behavior for various boundary conditions
become appreciable (Figures 6–8). Most of all, differences in the behavior of the secondary
eddy along the bottom wall are noted. Thus, in the case of ‘fixed’ boundary conditions (Figure
6), the eddy decays after reaching the artificial boundary; in the case of uniform drift
conditions (drift conditions with U (1)) (Figure 7), the eddy passes over the artificial boundary
unnaturally increasing; finally, in the case of Poiseuille drift conditions (with U (2)) (Figure 8),
the eddy also passes over the boundary with a less increase. In the latter case, the solution
coincides with the ‘exact’ one.

Figure 4. The main vortex is forming and moving downstream.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 499–534
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Figure 5. Formation of the secondary eddy along the bottom wall and of the next main vortex.

Let us turn to the description of the solution during the second stage, the stage of the
periodic solution behavior (Figures 9–13); we consider time 4K as the beginning of this stage.
Now the flow near outflow boundary is substantially unsteady and non-linear. Here we
compare solutions in the case of HS boundary conditions and drift boundary conditions with
the ‘exact’ solution. In all these cases, on every time interval of K, only one main vortex forms
and disappears. Thus, two or three main vortices are observed simultaneously during the
period of damper movement.

Further we focus our attention on the peculiarity of the main vortices evolution with
different outflow conditions. The ‘exact’ solution is shown in Figure 9. The main vortices
moving in the direction of top right corner of the domain are observed. Changes in the form
of the main vortex near the outflow boundary are caused by the influence of the previous
vortex which has already passed over the boundary.

In the case of ‘fixed’ boundary conditions (drift function: U (0)) (Figure 10), the main vortex
dissipates after reaching the corner, staying immovable. Similarly, after some growing, the
secondary eddy decays in the bottom right corner.

In the case of uniform drift boundary conditions, the main vortex passes smoothly over the
outflow boundary (Figure 11). The secondary eddy passes over the artificial boundary along
the bottom wall without visible changes of size.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 499–534
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Figure 6. The decay of the secondary eddy, ‘fixed’ boundary conditions.

In the case of Poiseuille drift conditions (Figure 12) and HS conditions (Figure 13), the
situation does not change substantially in comparison with uniform drift conditions. However,
in the both cases of drift boundary conditions and in the case of HS conditions, the main
vortex undergoes some distortion passing the outflow boundary. So far a preference can not
be made and further study and comparison are performed below.

Thus, for Problem I we see that in the cases of the drift conditions U (k), k=1, 2, and HS
conditions, a more reliable situation of fluid motion in comparison with ‘fixed’ conditions is
observed. The latter are improper and have influence on the flow far upstream. Differences in
the solutions behavior for two drift conditions settings are also seen. During the first stage, the
shape of the secondary eddy, passing over the outflow boundary, is more reliable for the
Poiseuille drift conditions.

Evidently, the proper boundary conditions should minimize the upstream influence of the
artificial boundary, i.e., the error introduced by setting some conditions on the artificial
boundary should be localized near this boundary. In Figures 14 and 15 the difference in
pressure between the ‘exact’ solution and solutions with all tested boundary conditions is
shown for y=0.5 (center of domain) and y=0.94 (near the top wall). Here we plot an aspect
error, i.e., the difference divided by the appropriate L2 norm of the ‘exact’ solution. We see
that drift conditions with U (1) and HS conditions, as well as ‘fixed’ boundary conditions, may
produce spurious oscillations in pressure far upstream. Moreover, ‘fixed’ boundary conditions
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Figure 7. Passing of the secondary eddy over the boundary with uniform drift conditions.

cause a dramatic growth in error near the artificial boundary (t=3.8, t=3.9 in Figure 14 and
t=3.5, t=4.0 in Figure 15). Only the drift boundary conditions with the Poiseuille drift
function (U2) demonstrate a decay of oscillations in error function in some region near the
artificial boundary. Note also that the error in pressure is defined in each time up to an
additive constant (as well as pressure functions themselves).

A similar situation is observed for the difference in u1 (Figure 16) and u2 (Figure 17) between
the ‘exact’ solution and solutions with various boundary conditions (y=0.5 in both cases).
Again the drift boundary conditions with U2 demonstrate the best results. Note that the HS
boundary conditions produced sometimes better results upstream than the ‘fixed’ conditions
(t=3.8, t=3.9 on Figure 16 and t=3.5–3.7 on Figure 17).

Now we turn our attention to the behavior of different flow characteristics on the artificial
boundary. In Figure 18 the profiles of the u1 velocity component on the outflow are shown.
The u1 profiles in the cases of the Poiseuille drift conditions and HS conditions practically
coincide and they are in a better agreement with ‘exact’ conditions than with profiles of the
solution with uniform drift conditions.

In Figure 19 the profiles of u2 velocity on the outflow are shown. For all boundary
conditions, the u2 component on the outflow is rather far from the ‘exact’ one and no
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Figure 8. Passing of the secondary eddy over the boundary with Poiseuille drift conditions.

preference could be given. It seems that the observation of velocity profiles on the artificial
boundary helps us to explain the success of the Poiseuille drift conditions in comparison with
uniform drift conditions, but not yet with HS conditions. This is why we also compare the
normal derivatives of velocity components on the outflow.

In Figure 20 we show (u1/(n on the outflow. For the Poiseuille drift conditions and HS
conditions, the results are the same and only qualitatively correspond to the ‘exact’ derivatives
for some t.

In Figure 21 we show (u2/(n on the outflow. We recall that (u2/(n=0 for HS conditions,
and from Figure 21, we see that this condition is too far from being satisfied by the ‘exact’
solution. It seems that the drift boundary conditions with U2 and even with U1 produce a
better approximation of (u2/(n on the outflow than HS conditions. We propose that the
success of the Poiseuille drift conditions is due to the better approximation of the normal
derivative of u2 in comparison with (u2/(n=0. For the ‘fixed’ boundary conditions, the values
of (u1/(n and (u2/(n are absolutely wrong.

Now we will present some results for Problem II. In Figures 22–25 we show the full period
of problem II solutions (i.e., with the [BC] step on the outflow), the exact one (Figure 22) and
with various boundary conditions.
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Figure 9. The ‘exact’ solution; restriction of the elongated computational domain.

As well as in Problem I, we carried out our calculations on time interval [0, 20K ]
with t=2×10−4, n=0.01. After 4K, solutions have a periodic behavior. Now the second-
ary eddy, moving along the bottom wall, does not approach the outflow boundary,
but flowing together with the small eddy at the base of the [BC] step, leads to its pul-
sation.

For the ‘fixed’ boundary conditions (Figure 23), just as in Problem I, a gradual decay of the
main vortex is observed in the top right corner of the domain.
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Figure 10. The decay of the main vortex, ‘fixed’ boundary conditions.

For the uniform drift boundary conditions, the main vortex decreases and passes smoothly
over the outflow boundary (Figure 24). The behavior of the flow near the artificial boundary
is qualitatively the same as in the ‘exact’ case.

For the Poiseuille drift boundary conditions (Figure 25), the situation seems to differ from
the case of the uniform drift: the main vortex moves to the top right corner, where it distorts
and dissipates. However, in contrast to the ‘fixed’ boundary conditions, no spurious oscilla-
tions are observed near the outflow.

Thus, in Problem II only the uniform boundary conditions turn out to be acceptable in the
sense of mechanical reliability of the solution obtained. The uniform boundary conditions
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Figure 11. Passing of the main eddy over the boundary with uniform drift conditions.

appear probably to be the most preferable, when a ‘typical’ flow U (see Section 2) cannot be
distinguished on the outflow boundary.

In Figure 26 we demonstrate the difference in pressure between the ‘exact’ solution and
solutions with the drift boundary conditions Uk, k=0, 1, 2 for y=0.75. All boundary
conditions have approximately the same upstream influence.

4.4. On computational inputs

To give a quantitative idea of the computational inputs we present in Table II the CPU time
needed for some problems considered.
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Figure 12. Passing of the main eddy over the boundary with Poiseuille drift conditions.

Almost the same CPU time for the problems with various boundary conditions (other
parameters are fixed) indicates that norms of solution differences on neighboring time layers
have approximately the same ratio and the cost of one time step was the same for all
considered boundary conditions.

Note that the 2.5-times increase in the number of time steps and 2-times increase in the
number of grid points provided only a 2.4-times increase in CPU time. It can be explained,
firstly, by the 2-times reduction in norms of solutions’ differences on neighboring time layers
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Figure 13. Passing of the main eddy over the boundary with HS boundary conditions.

and, secondly, decreasing of t (as well as n) implies growth of convergence rate of the interior
iterative process used (see Section 3 and Reference [26]).

5. REMARKS AND CONCLUSIONS

Much more various combinations of velocity components and their derivatives can be
considered on the artificial boundary as an outflow condition. Many of them can be found in
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Figure 14. Error in pressure for y=0.5, where – +× –, b.c. with U0; —*× , b.c. with U1; —, b.c. with U2;
– – –, HS b.c.
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Figure 15. Error in pressure for y=0.94, where – +× –, b.c. with U0; —*× , b.c. with U1; —, b.c. with U2;
– – –, HS b.c.
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Figure 16. Error in u1 for y=0.5, – +× –, b.c. with U0; —*× , b.c. with U1; —, b.c. with U2; – – –, HS
b.c.
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Figure 17. Error in u2 for y=0.5, where – +× –, b.c. with U0; —*× , b.c. with U1; —, b.c. with U2; – – –,
HS b.c.
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Figure 18. u1 profile on the outlet (x=2), where
, exact; – +× –, b.c. with U0; —*× , b.c. with U1; —, b.c.
with U2; – – –, HS b.c.
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Figure 19. u2 profile on the outlet (x=2), where
, exact; – +× –, b.c. with U0; —*× , b.c. with U1; —, b.c.
with U2; – – –, HS b.c.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 499–534



M. A. OL’SHANSKII AND V. M. STAROVEROV526

Figure 20. (u1/(x on the outlet (x=2), where 
, exact; – +× –, b.c. with U0; —*× , b.c. with U1; —, b.c.
with U2; – – –, HS b.c.
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Figure 21. (u2/(x on the outlet (x=2), where 
, exact; – +× –, b.c. with U0; —*× , b.c. with U1; —, b.c.
with U2; – – –, HS b.c.
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Figure 22. The ‘exact’ solution; restriction of the real forward-facing step problem.

the literature cited. Some other boundary conditions of the advection type were also tested by
us. We briefly comment on them.

Boundary conditions with a drift function simply taken from the previous time step, i.e.,

(u
(t

+u1

(u
(n

=0

turns out to be not a good choice on the outflow. They work similar to the ‘fixed’ condi-
tions.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 499–534



SIMULATION OF OUTFLOW BOUNDARY CONDITIONS 529

Figure 23. The decay of the main vortex with ‘fixed’ boundary conditions, [BC] step is on the outlet.

The following boundary conditions:

(u1

(t
+U1

(k) (u1

(n
=0, k=1, 2

u2=0

were also tested and showed themselves to be of the absorbing type. The behavior of the flow
was rather like in the case of uniform drift outflow conditions.
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Figure 24. Passing of the main eddy over the boundary with uniform drift conditions, [BC] step is on the
outlet.

Resuming the results of all experiments we state that the drift boundary conditions with
appropriate drift function is the best choice in the considered class of absorbing outflow
conditions. They really suppress an upstream influence of the artificial boundary and at the
same time they are convenient in computations via various finite methods. When there is no
appropriate drift function, the uniform drift conditions seems to be the proper choice.
Anyway, the good choice of the drift function in (7) is quite important.

Finally, we propose that a good approximation of u1, (u1/(n, and (u2/(n on the artificial
boundary is of major importance, while the approximation of u2 is of minor one.
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Figure 25. The decay of the main vortex with Poiseuille drift boundary conditions, [BC] step is on the
outlet.

Table II. Computing time for RISC-6000 processor (h:min); n=0.01, Re=
103, t1=5.

t N×M U0Outlet U1 U2

5×10−4 32×64Free 5:44 5:39 5:39
5:41 5:40 5:40

2×10−4 64×64 13:23[BC] step 13:25 13:32
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Figure 26. Error in pressure for y=0.75, where – +× –, b.c. with U0; —*× , b.c. with U1; —, b.c. with U2.
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